Hidden Symmetries in Discrete Clifford Analysis

Nelson Faustino

University of Campinas (UNICAMP), Brazil

faustino@ime.unicamp.br

Group 30, July 14–18 2014, Ghent
1. **Starting with the Harmonic Oscillator**
 - Exact solvability
 - Quantum Field setting
 - The multivector calculus approach

2. **Lie-algebraic discretization**
 - The Setting
 - Weyl-Heisenberg symmetries
 - $\mathfrak{su}(1,1)$ symmetries

3. **The factorization approach**
 - Overview
 - The star-Laplacian
 - The SUSY QM picture
Hidden Symmetries in Discrete Clifford Analysis

Nelson Faustino

Starting with the Harmonic Oscillator

Exact solvability

Quantum Field setting

The multivector calculus approach

Lie-algebraic discretization

The Setting

Weyl-Heisenberg symmetries

$\mathfrak{u}(1,1)$ symmetries

The factorization approach

Overview

The star-Laplacian

The SUSY QM picture
The Harmonic Oscillator Model

Time-harmonic Schrödinger equation

\[\mathcal{H}\psi(x) = \varepsilon\psi(x), \quad \text{with} \quad \mathcal{H} = -\frac{\hbar^2}{2m}\Delta + V(x). \]
The Harmonic Oscillator Model

Time-harmonic Schrödinger equation

\[\mathcal{H}\psi(x) = \varepsilon\psi(x), \quad \text{with} \quad \mathcal{H} = -\frac{\hbar^2}{2m} \Delta + V(x). \]

- **mass term.**
- **Planck’s constant.**
- **kinetic energy operator**
- **potential (real-valued function)**

Exact solvability: Assured by the existence of the function \(u(x) \) such that
\[V(x) = \frac{1}{2} \sum_{j=1}^{n} (\partial_{x_j} u(x))^2. \]

Ladder operators:
\[a_j = \frac{1}{\sqrt{2}} \left(\partial_{x_j} u(x) + \frac{i}{\sqrt{m}} \partial_{x_j} \right) \quad \text{and} \quad a_j^\dagger = \frac{1}{\sqrt{2}} \left(\partial_{x_j} u(x) - \frac{i}{\sqrt{m}} \partial_{x_j} \right) \]
satisfy
\[\mathcal{H} = \frac{1}{2} \sum_{j=1}^{n} a_j^\dagger a_j + a_j a_j^\dagger. \]
The Harmonic Oscillator Model

Time-harmonic Schrödinger equation

\[\mathcal{H}\psi(x) = \varepsilon \psi(x), \quad \text{with} \quad \mathcal{H} = -\frac{\hbar^2}{2m} \Delta + V(x). \]

- \(m \)- mass term.
- \(\hbar \)- Planck’s constant.
- \(-\frac{\hbar^2}{2m} \Delta \)- kinetic energy operator
- \(V(x) \)- potential (real-valued function)

- Exact solvability: Assured by the existence of the function \(u(x) \) such that \(V(x) = \frac{1}{2} \sum_{j=1}^{n} (\partial_{x_j} u(x))^2 \).
- Ladder operators:
 \[a_j = \frac{1}{\sqrt{2}} \left(\partial_{x_j} u(x) + \frac{i}{\sqrt{m}} \partial_{x_j} \right) \text{ and } \]
 \[a_j^\dagger = \frac{1}{\sqrt{2}} \left(\partial_{x_j} u(x) - \frac{i}{\sqrt{m}} \partial_{x_j} \right) \]
 satisfy
 \[\mathcal{H} = \frac{1}{2} \sum_{j=1}^{n} a_j^\dagger a_j + a_j a_j^\dagger. \]
The Harmonic Oscillator Model

Time-harmonic Schrödinger equation

\[\mathcal{H}\psi(x) = \varepsilon\psi(x), \quad \text{with} \quad \mathcal{H} = -\frac{\hbar^2}{2m}\Delta + V(x). \]

- \(m \)- mass term.
- \(\hbar \)- Planck’s constant.
- \(-\frac{\hbar^2}{2m}\Delta \)- kinetic energy operator
- \(V(x) \)- potential (real-valued function)

- Exact solvability: Assured by the existence of the function \(u(x) \) such that
 \[V(x) = \frac{1}{2} \sum_{j=1}^n (\partial_{x_j} u(x))^2. \]

- Ladder operators:
 \[a_j = \frac{1}{\sqrt{2}} \left(\partial_{x_j} u(x) + \frac{\hbar}{\sqrt{m}} \partial_{x_j} \right) \quad \text{and} \quad \]
 \[a_j^\dagger = \frac{1}{\sqrt{2}} \left(\partial_{x_j} u(x) - \frac{\hbar}{\sqrt{m}} \partial_{x_j} \right) \]
 satisfy
 \[\mathcal{H} = \frac{1}{2} \sum_{j=1}^n a_j^\dagger a_j + a_j a_j^\dagger. \]
The Harmonic Oscillator Model

Time-harmonic Schrödinger equation

\[\mathcal{H}\psi(x) = \epsilon \psi(x), \quad \text{with} \quad \mathcal{H} = -\frac{\hbar^2}{2m} \Delta + V(x). \]

- **m** - mass term.
- **\hbar** - Planck’s constant.
- \(-\frac{\hbar^2}{2m} \Delta\) - kinetic energy operator
- **V(x)** - potential (real-valued function)

Exact solvability: Assured by the existence of the function \(u(x)\) such that
\[V(x) = \frac{1}{2} \sum_{j=1}^{n} (\partial_{x_j} u(x))^2. \]

Ladder operators:
\[a_j = \frac{1}{\sqrt{2}} \left(\partial_{x_j} u(x) + \frac{\hbar}{\sqrt{m}} \partial_{x_j} \right) \quad \text{and} \quad a_j^\dagger = \frac{1}{\sqrt{2}} \left(\partial_{x_j} u(x) - \frac{\hbar}{\sqrt{m}} \partial_{x_j} \right) \]
satisfy
\[\mathcal{H} = \frac{1}{2} \sum_{j=1}^{n} a_j^\dagger a_j + a_j a_j^\dagger. \]
The Harmonic Oscillator Model

Time-harmonic Schrödinger equation

\[\mathcal{H}\psi(x) = \epsilon \psi(x), \quad \text{with} \quad \mathcal{H} = -\frac{\hbar^2}{2m} \Delta + V(x). \]

- **\(m \)** - mass term.
- **\(\hbar \)** - Planck’s constant.
- **\(-\frac{\hbar^2}{2m} \Delta \)** - kinetic energy operator
- **\(V(x) \)** - potential (real-valued function)

Exact solvability: Assured by the existence of the function \(u(x) \) such that

\[V(x) = \frac{1}{2} \sum_{j=1}^{n} (\partial_j u(x))^2. \]

Ladder operators:

\[a_j = \frac{1}{\sqrt{2}} \left(\partial_j u(x) + \frac{\hbar}{\sqrt{m}} \partial_{\bar{x}j} \right) \text{ and } \]

\[a_j^\dagger = \frac{1}{\sqrt{2}} \left(\partial_j u(x) - \frac{\hbar}{\sqrt{m}} \partial_{\bar{x}j} \right) \]

satisfy

\[\mathcal{H} = \frac{1}{2} \sum_{j=1}^{n} a_j^\dagger a_j + a_j a_j^\dagger. \]
The Harmonic Oscillator Model

Time-harmonic Schrödinger equation

\[\mathcal{H} \psi(x) = \varepsilon \psi(x), \quad \text{with} \quad \mathcal{H} = -\frac{\hbar^2}{2m} \Delta + V(x). \]

- **m** - mass term.
- **\(\hbar \)** - Planck’s constant.
- **\(-\frac{\hbar^2}{2m} \Delta \)** - kinetic energy operator
- **\(V(x) \)** - potential (real-valued function)

- **Exact solvability**: Assured by the existence of the function \(u(x) \) such that
 \[V(x) = \frac{1}{2} \sum_{j=1}^{n} (\partial_{x_j} u(x))^2. \]

- **Ladder operators**:
 \[a_j = \frac{1}{\sqrt{2}} \left(\partial_{x_j} u(x) + \frac{\hbar}{\sqrt{m}} \partial_{x_j} \right) \text{ and } a_j^\dagger = \frac{1}{\sqrt{2}} \left(\partial_{x_j} u(x) - \frac{\hbar}{\sqrt{m}} \partial_{x_j} \right) \]
 satisfy
 \[\mathcal{H} = \frac{1}{2} \sum_{j=1}^{n} a_j^\dagger a_j + a_j a_j^\dagger. \]
The Harmonic Oscillator Model

Time-harmonic Schrödinger equation

\[\mathcal{H}\psi(x) = \varepsilon\psi(x), \quad \text{with} \quad \mathcal{H} = -\frac{\hbar^2}{2m}\Delta + V(x). \]

- **\(m \)** - mass term.
- **\(\hbar \)** - Planck’s constant.
- **\(-\frac{\hbar^2}{2m}\Delta \)** - kinetic energy operator
- **\(V(x) \)** - potential (real-valued function)

Exact solvability: Assured by the existence of the function \(u(x) \) such that

\[V(x) = \frac{1}{2} \sum_{j=1}^{n} (\partial_{x_j} u(x))^2. \]

Ladder operators:

\[a_j = \frac{1}{\sqrt{2}} \left(\partial_{x_j} u(x) + \frac{\hbar}{\sqrt{m}} \partial_{x_j} \right) \quad \text{and} \quad a_j^\dagger = \frac{1}{\sqrt{2}} \left(\partial_{x_j} u(x) - \frac{\hbar}{\sqrt{m}} \partial_{x_j} \right) \]

satisfy

\[\mathcal{H} = \frac{1}{2} \sum_{j=1}^{n} a_j^\dagger a_j + a_j a_j^\dagger. \]
The Harmonic Oscillator Model

Hidden
Symmetries in
Discrete Clifford
Analysis
Nelson Faustino

Starting with the
Harmonic
Oscillator
Exact solvability
Quantum Field
setting
The multivector
calculus approach

Lie-algebraic
discretization
The Setting
Weyl-Heisenberg
symmetries
su(1,1)
symmetries
The factorization
approach
Overview
The star-Laplacian
The SUSY QM
picture

Time-harmonic Schrödinger equation

\[\mathcal{H}\psi(x) = \varepsilon\psi(x), \quad \text{with} \quad \mathcal{H} = -\frac{\hbar^2}{2m} \Delta + V(x). \]

- **Exact solvability:** Assured by the existence of the function \(u(x) \) such that
 \[V(x) = \frac{1}{2} \sum_{j=1}^{n} (\partial_{x_j} u(x))^2. \]

- **Ladder operators:**
 \[a_j = \frac{1}{\sqrt{2}} \left(\partial_{x_j} u(x) + \frac{\hbar}{\sqrt{m}} \partial_{x_j} \right) \text{ and } \]
 \[a_j^\dagger = \frac{1}{\sqrt{2}} \left(\partial_{x_j} u(x) - \frac{\hbar}{\sqrt{m}} \partial_{x_j} \right) \]
 satisfy
 \[\mathcal{H} = \frac{1}{2} \sum_{j=1}^{n} a_j^\dagger a_j + a_j a_j^\dagger. \]
The Harmonic Oscillator Model

Time-harmonic Schrödinger equation

\[\mathcal{H}\psi(x) = \varepsilon \psi(x), \quad \text{with} \quad \mathcal{H} = -\frac{\hbar^2}{2m} \Delta + V(x). \]

- **m**- mass term.
- **\hbar**- Planck’s constant.
- \(-\frac{\hbar^2}{2m} \Delta\) - kinetic energy operator
- \(V(x)\)- potential (real-valued function)

Exact solvability: Assured by the existence of the function \(u(x)\) such that
\[V(x) = \frac{1}{2} \sum_{j=1}^{n} \left(\partial_{x_j} u(x) \right)^2. \]

Ladder operators:
\[a_j = \frac{1}{\sqrt{2}} \left(\partial_{x_j} u(x) + \frac{\hbar}{\sqrt{m}} \partial_{x_j} \right) \quad \text{and} \]
\[a_j^\dagger = \frac{1}{\sqrt{2}} \left(\partial_{x_j} u(x) - \frac{\hbar}{\sqrt{m}} \partial_{x_j} \right) \]

satisfy
\[\mathcal{H} = \frac{1}{2} \sum_{j=1}^{n} a_j^\dagger a_j + a_j a_j^\dagger. \]
Quantum Field Theory (QFT) setting

Exact solutions of the time-independent Schrödinger equation are determined by means of the 2nd quantization approach.

- Fock space: Vector space $(\mathcal{F}, \langle \cdot | \cdot \rangle)$ such that
 - \mathcal{F}: Free algebra generated by the elements a_j and a_j^\dagger from the vacuum vector ϕ such that $a_j \phi = 0$.
 - $\langle \cdot | \cdot \rangle$: Euclidean inner product in \mathcal{F} such that $\langle \phi | \phi \rangle = 1$ and a_j^\dagger are adjoint to a_j, i.e., $\langle a_j^\dagger x | y \rangle = \langle x | a_j y \rangle$.

- Standard lemma in QFT: All the basic vectors in \mathcal{F} have the following form
 $$\phi_u(x) = \left(\prod_{j=1}^n (a_j^\dagger)_{\alpha_j} \right) \phi(x)$$

- Vacuum vector connection: If $\phi(x)$ is a vacuum vector then
 $$u(x) = -\frac{\hbar}{\sqrt{m}} \log(\phi(x))$$

and so, the time-harmonic Schrödinger equation is exactly solvable.
Quantum Field Theory (QFT) setting

Exact solutions of the **time-independent Schrödinger equation** are determined by means of the **2nd quantization approach**.

- **Fock space**: Vector space $(\mathcal{F}, \langle \cdot | \cdot \rangle)$ such that
 - \mathcal{F}: Free algebra generated by the elements a_j and a_j^\dagger from the vacuum vector ϕ such that $a_j \phi = 0$.
 - $\langle \cdot | \cdot \rangle$: Euclidean inner product in \mathcal{F} such that $\langle \phi | \phi \rangle = 1$ and a_j^\dagger are adjoint to a_j, i.e. $\langle a_j^\dagger x | y \rangle = \langle x | a_j y \rangle$.

- **Standard lemma in QFT**: All the basic vectors in \mathcal{F} have the following form
 $$\phi_u(x) = \left(\prod_{j=1}^n (a_j^\dagger)^{\alpha_j} \right) \phi(x)$$

- **Vacuum vector connection**: If $\phi(x)$ is a vacuum vector then
 $$u(x) = -\frac{\hbar}{\sqrt{m}} \log(\phi(x))$$

and so, the time-harmonic Schrödinger equation is **exactly solvable**.
Quantum Field Theory (QFT) setting

Exact solutions of the time-independent Schrödinger equation are determined by means of the 2nd quantization approach.

- **Fock space:** Vector space \((\mathcal{F}, \langle \cdot | \cdot \rangle)\) such that
 1. \(\mathcal{F}\): Free algebra generated by the elements \(a_j\) and \(a_j^\dagger\) from the vacuum vector \(\phi\) such that \(a_j\phi = 0\).
 2. \(\langle \cdot | \cdot \rangle\): Euclidean inner product in \(\mathcal{F}\) such that \(\langle \phi | \phi \rangle = 1\) and \(a_j^\dagger\) are adjoint to \(a_j\), i.e. \(\langle a_j^\dagger x | y \rangle = \langle x | a_j y \rangle\).

- Standard lemma in QFT: All the basic vectors in \(\mathcal{F}\) have the following form
 \[
 \phi_u(x) = \left(\prod_{j=1}^n (a_j^\dagger)^{\alpha_j} \right) \phi(x)
 \]

- Vacuum vector connection: If \(\phi(x)\) is a vacuum vector then \(u(x)\) is
 \[
 u(x) = - \frac{\hbar}{\sqrt{m}} \log (\phi(x))
 \]
 and so, the time-harmonic Schrödinger equation is exactly solvable.
Exact solutions of the time-independent Schrödinger equation are determined by means of the 2nd quantization approach.

- **Fock space**: Vector space \((\mathcal{F}, \langle \cdot | \cdot \rangle)\) such that
 1. \(\mathcal{F}\): Free algebra generated by the elements \(a_j\) and \(a_j^\dagger\) from the vacuum vector \(\phi\) such that \(a_j \phi = 0\).
 2. \(\langle \cdot | \cdot \rangle\): Euclidean inner product in \(\mathcal{F}\) such that \(\langle \phi | \phi \rangle = 1\) and \(a_j^\dagger\) are adjoint to \(a_j\), i.e. \(\langle a_j^\dagger x | y \rangle = \langle x | a_j y \rangle\).

- **Standard lemma in QFT**: All the basic vectors in \(\mathcal{F}\) have the following form
 \[\phi_\alpha(x) = (\prod_{j=1}^n (a_j^\dagger)^{\alpha_j}) \phi(x)\]

- **Vacuum vector connection**: If \(\phi(x)\) is a vacuum vector then
 \[u(x) = -\frac{\hbar}{\sqrt{m}} \log (\phi(x))\]
 and so, the time-harmonic Schrödinger equation is exactly solvable.
Quantum Field Theory (QFT) setting

Exact solutions of the time-independent Schrödinger equation are determined by means of the 2nd quantization approach.

- **Fock space:** Vector space $(\mathcal{F}, \langle \cdot | \cdot \rangle)$ such that

 1. \mathcal{F}: Free algebra generated by the elements a_j and a_j^\dagger from the vacuum vector ϕ such that $a_j \phi = 0$.

 2. $\langle \cdot | \cdot \rangle$: Euclidean inner product in \mathcal{F} such that $\langle \phi | \phi \rangle = 1$ and a_j^\dagger are adjoint to a_j, i.e. $\langle a_j^\dagger x | y \rangle = \langle x | a_j y \rangle$.

- Standard lemma in QFT: All the basic vectors in \mathcal{F} have the following form

 \[\phi_\alpha(x) = \left(\prod_{j=1}^n (a_j^\dagger)^\alpha_j \right) \phi(x) \]

- Vacuum vector connection: If $\phi(x)$ is a vacuum vector then

 \[u(x) = -\frac{\hbar}{\sqrt{m}} \log (\phi(x)) \]

 and so, the time-harmonic Schrödinger equation is exactly solvable.
Exact solutions of the time-independent Schrödinger equation are determined by means of the 2nd quantization approach.

- **Fock space:** Vector space \((\mathcal{F}, \langle \cdot | \cdot \rangle)\) such that
 1. \(\mathcal{F}\): Free algebra generated by the elements \(a_j\) and \(a_j^\dagger\) from the vacuum vector \(\phi\) such that \(a_j\phi = 0\).
 2. \(\langle \cdot | \cdot \rangle\): Euclidean inner product in \(\mathcal{F}\) such that \(\langle \phi | \phi \rangle = 1\) and \(a_j^\dagger\) are adjoint to \(a_j\), i.e. \(\langle a_j^\dagger x | y \rangle = \langle x | a_j y \rangle\).

- **Standard lemma in QFT:** All the basic vectors in \(\mathcal{F}\) have the following form
 \[\phi_\alpha(x) = \left(\prod_{j=1}^{n} (a_j^\dagger)^{\alpha_j} \right) \phi(x) \]

- **Vacuum vector connection:** If \(\phi(x)\) is a vacuum vector then
 \[u(x) = -\frac{\hbar}{\sqrt{m}} \log(\phi(x)) \]
 and so, the time-harmonic Schrödinger equation is exactly solvable.
Quantum Field Theory (QFT) setting

Exact solutions of the **time-independent Schrödinger equation** are determined by means of the **2nd quantization approach**.

- **Fock space**: Vector space $(\mathcal{F}, \langle \cdot | \cdot \rangle)$ such that
 1. \mathcal{F}: Free algebra generated by the elements a_j and a_j^\dagger from the vacuum vector ϕ such that $a_j \phi = 0$.
 2. $\langle \cdot | \cdot \rangle$: Euclidean inner product in \mathcal{F} such that $\langle \phi | \phi \rangle = 1$ and a_j^\dagger are adjoint to a_j, i.e. $\langle a_j^\dagger x | y \rangle = \langle x | a_j y \rangle$.

- **Standard lemma in QFT**: All the basic vectors in \mathcal{F} have the following form
 $$\phi_\alpha(x) = \left(\prod_{j=1}^n (a_j^\dagger)^{\alpha_j} \right) \phi(x)$$

- **Vacuum vector connection**: If $\phi(x)$ is a vacuum vector then
 $$u(x) = -\frac{\hbar}{\sqrt{m}} \log(\phi(x))$$

and so, the time-harmonic Schrödinger equation is *exactly solvable*.

1. Hidden Symmetries in Discrete Clifford Analysis
2. Nelson Faustino
3. Starting with the Harmonic Oscillator
4. Quantum Field setting
5. The multivector calculus approach
6. Lie-algebraic discretization
7. The Setting
8. Weyl-Heisenberg symmetries $su(1, 1)$ symmetries
9. The factorization approach
10. Overview
11. The star-Laplacian
12. The SUSY QM picture
Quantum Field Theory (QFT) setting

Exact solutions of the time-independent Schrödinger equation are determined by means of the 2nd quantization approach.

- **Fock space**: Vector space $(\mathcal{F}, \langle \cdot | \cdot \rangle)$ such that
 1. \mathcal{F}: Free algebra generated by the elements a_j and a_j^\dagger from the vacuum vector ϕ such that $a_j \phi = 0$.
 2. $\langle \cdot | \cdot \rangle$: Euclidean inner product in \mathcal{F} such that $\langle \phi | \phi \rangle = 1$ and a_j^\dagger are adjoint to a_j, i.e. $\langle a_j^\dagger x | y \rangle = \langle x | a_j y \rangle$.

- **Standard lemma in QFT**: All the basic vectors in \mathcal{F} have the following form
 $$\phi_\alpha(x) = \left(\prod_{j=1}^{n}(a_j^\dagger)^{\alpha_j} \right) \phi(x)$$

- **Vacuum vector connection**: If $\phi(x)$ is a vacuum vector then
 $$u(x) = -\frac{\hbar}{\sqrt{m}} \log (\phi(x))$$
 and so, the time-harmonic Schrödinger equation is *exactly solvable*.
Clifford Analysis: Study of operators belonging to the algebra

\[\text{Alg} \{ x_j, \partial x_j, e_j : j = 1, \ldots, n \}, \]

1. \(x_j \) and \(\partial x_j \) satisfy the Weyl-Heisenberg graded commuting relations

\[[\partial x_j, \partial x_k] = [x_j, x_k] = 0 \text{ and } [\partial x_j, x_k] = \delta_{jk} I. \]

2. \(e_1, e_2, \ldots, e_n \) are the generators of the Clifford algebra \(C\ell_{0,n} \). The remainder graded anti-commuting relations are given by

\[e_j e_k + e_k e_j = -2\delta_{jk}. \]

- Multivector derivative: \(D = \sum_{j=1}^n e_j \partial x_j \) is the standard Dirac operator (embedding of the gradient derivative on \(C\ell_{0,n} \)).

- Multivector multiplication: \(X : f(x) \mapsto \sum_{j=1}^n e_j x_j f(x) \) is the standard left multiplication of \(f(x) \) by the Clifford vector \(x = \sum_{j=1}^n x_j e_j \).
Clifford Analysis: Study of operators belonging to the algebra

\[\text{Alg} \{ x_j, \partial x_j, e_j : j = 1, \ldots, n \}, \]

1. \(x_j \) and \(\partial x_j \) satisfy the **Weyl-Heisenberg graded commuting relations**

\[
[\partial x_j, \partial x_k] = [x_j, x_k] = 0 \quad \text{and} \quad [\partial x_j, x_k] = \delta_{jk} l.
\]

2. \(e_1, e_2, \ldots, e_n \) are the generators of the **Clifford algebra** \(C\ell_{0,n} \). The remainder graded anti-commuting relations are given by

\[
e_j e_k + e_k e_j = -2\delta_{jk}.
\]

- **Multivector derivative:** \(D = \sum_{j=1}^{n} e_j \partial x_j \) is the standard Dirac operator (embedding of the gradient derivative on \(C\ell_{0,n} \)).

- **Multivector multiplication:** \(X : f(x) \mapsto \sum_{j=1}^{n} e_j x_j f(x) \) is the standard left multiplication of \(f(x) \) by the Clifford vector \(x = \sum_{j=1}^{n} x_j e_j \).
Clifford Analysis: Study of operators belonging to the algebra

\[\text{Alg} \{ x_j, \partial x_j, e_j : j = 1, \ldots, n \}, \]

1. \(x_j \) and \(\partial x_j \) satisfy the **Weyl-Heisenberg graded commuting relations**

\[[\partial x_j, \partial x_k] = [x_j, x_k] = 0 \text{ and } [\partial x_j, x_k] = \delta_{jk} l. \]

2. \(e_1, e_2, \ldots, e_n \) are the generators of the **Clifford algebra** \(\mathcal{C}_{\ell_0,n} \). The remainder graded anti-commuting relations are given by

\[e_j e_k + e_k e_j = -2\delta_{jk}. \]

Multivector derivative: \(D = \sum_{j=1}^n e_j \partial x_j \) is the standard Dirac operator (embedding of the gradient derivative on \(\mathcal{C}_{\ell_0,n} \)).

Multivector multiplication: \(X : f(x) \mapsto \sum_{j=1}^n e_j x_j f(x) \) is the standard left multiplication of \(f(x) \) by the Clifford vector \(x = \sum_{j=1}^n x_j e_j \).
Clifford Analysis: Study of operators belonging to the algebra

\[\text{Alg} \{ x_j, \partial x_j, e_j : j = 1, \ldots, n \}, \]

1. \(x_j \) and \(\partial x_j \) satisfy the Weyl-Heisenberg graded commuting relations

\[[\partial x_j, \partial x_k] = [x_j, x_k] = 0 \text{ and } [\partial x_j, x_k] = \delta_{jk} l. \]

2. \(e_1, e_2, \ldots, e_n \) are the generators of the Clifford algebra \(C\ell_{0,n} \). The remainder graded anti-commuting relations are given by

\[e_j e_k + e_k e_j = -2\delta_{jk}. \]

- Multivector derivative: \(D = \sum_{j=1}^{n} e_j \partial x_j \) is the standard Dirac operator (embedding of the gradient derivative on \(C\ell_{0,n} \)).

- Multivector multiplication: \(X : f(x) \mapsto \sum_{j=1}^{n} e_j x_j f(x) \) is the standard left multiplication of \(f(x) \) by the Clifford vector \(x = \sum_{j=1}^{n} x_j e_j \).
Basic operators and relations

- **Basic properties:**
 1. Laplacian splitting: \(\Delta := \sum_{j=1}^{n} \partial_{x_j}^2 = -D^2 \)
 2. Exact solvability: Under the existence of a function \(u(x) \) satisfying \(V(x) = -\frac{1}{2} [Du(x)]^2 \) the time-harmonic Schrödinger equation is solvable.
 3. Ladder operator splitting: \(\mathcal{H} = -\frac{1}{2} (AA^\dagger + A^\dagger A) \), with

\[
A = \frac{1}{\sqrt{2}} \left(Du(x)I + \frac{\hbar}{\sqrt{m}} D \right) \quad \text{and} \\
A^\dagger = \frac{1}{\sqrt{2}} \left(Du(x)I - \frac{\hbar}{\sqrt{m}} D \right).
\]

- Wigner quantal symmetries: \(\text{span} \left\{ \frac{1}{2} A^2, \frac{1}{2} (A^\dagger)^2, \mathcal{H} \right\} \oplus \text{span} \left\{ A, A^\dagger \right\} \) is isomorphic to a Lie superalgebra \(\mathfrak{osp}(1|2) \) (cf. N.F. & G. Ren (2011)).
Basic operators and relations

- **Basic properties:**
 1. **Laplacian splitting:** \(\Delta := \sum_{j=1}^{n} \partial_{x_j}^2 = -D^2 \)
 2. **Exact solvability:** Under the existence of a function \(u(x) \) satisfying \(V(x) = -\frac{1}{2} [Du(x)]^2 \) the time-harmonic Schrödinger equation is solvable.
 3. **Ladder operator splitting:** \(H = -\frac{1}{2} (AA^\dagger + A^\dagger A) \), with

\[
A = \frac{1}{\sqrt{2}} \left(Du(x)I + \frac{\hbar}{\sqrt{m}} D \right)
\]
and
\[
A^\dagger = \frac{1}{\sqrt{2}} \left(Du(x)I - \frac{\hbar}{\sqrt{m}} D \right).
\]

- **Wigner quantal symmetries:**
 \(\text{span} \left\{ \frac{1}{2} A^2, \frac{1}{2} (A^\dagger)^2, H \right\} \oplus \text{span} \left\{ A, A^\dagger \right\} \) is isomorphic to a Lie superalgebra \(\mathfrak{osp}(1|2) \) (cf. N.F. & G. Ren (2011)).
Basic operators and relations

Basic properties:

1. **Laplacian splitting:** \(\Delta := \sum_{j=1}^{n} \partial_{x_j}^2 = -D^2 \)
2. **Exact solvability:** Under the existence of a function \(u(x) \) satisfying \(V(x) = -\frac{1}{2} [Du(x)]^2 \) the time-harmonic Schrödinger equation is solvable.
3. **Ladder operator splitting:** \(\mathcal{H} = -\frac{1}{2} (AA^\dagger + A^\dagger A) \), with
 \[
 A = \frac{1}{\sqrt{2}} \left(Du(x)I + \frac{\hbar}{\sqrt{m}} D \right) \quad \text{and} \quad A^\dagger = \frac{1}{\sqrt{2}} \left(Du(x)I - \frac{\hbar}{\sqrt{m}} D \right).
 \]

Wigner quantal symmetries:
\[
\text{span} \left\{ \frac{1}{2} A^2, \frac{1}{2} (A^\dagger)^2, \mathcal{H} \right\} \oplus \text{span} \left\{ A, A^\dagger \right\} \text{ is isomorphic to a Lie superalgebra } \text{osp}(1\mid 2) \text{ (cf. N.F. & G. Ren (2011)).}
\]
Basic operators and relations

- **Basic properties:**
 1. **Laplacian splitting:** \(\Delta := \sum_{j=1}^{n} \partial^2_{x_j} = -D^2 \)
 2. **Exact solvability:** Under the existence of a function \(u(x) \) satisfying \(V(x) = -\frac{1}{2} [Du(x)]^2 \) the time-harmonic Schrödinger equation is solvable.
 3. **Ladder operator splitting:** \(\mathcal{H} = -\frac{1}{2} (AA^\dagger + A^\dagger A) \), with

\[
A = \frac{1}{\sqrt{2}} \left(Du(x) I + \frac{\hbar}{\sqrt{m}} D \right) \quad \text{and} \\
A^\dagger = \frac{1}{\sqrt{2}} \left(Du(x) I - \frac{\hbar}{\sqrt{m}} D \right).
\]

- **Wigner quantal symmetries:**
 \(\text{span} \left\{ \frac{1}{2} A^2, \frac{1}{2} (A^\dagger)^2, \mathcal{H} \right\} \oplus \text{span} \left\{ A, A^\dagger \right\} \) is isomorphic to a Lie superalgebra \(\mathfrak{osp}(1|2) \) (cf. N.F. & G. Ren (2011)).
Basic operators and relations

- **Basic properties:**
 1. **Laplacian splitting:** $\Delta := \sum_{j=1}^{n} \partial_{x_j}^2 = -D^2$
 2. **Exact solvability:** Under the existence of a function $u(x)$ satisfying $V(x) = -\frac{1}{2} [Du(x)]^2$ the time-harmonic Schrödinger equation is solvable.
 3. **Ladder operator splitting:** $\mathcal{H} = -\frac{1}{2} (AA^\dagger + A^\dagger A)$, with

$$A = \frac{1}{\sqrt{2}} \left(Du(x) I + \frac{\hbar}{\sqrt{m}} D \right)$$
and

$$A^\dagger = \frac{1}{\sqrt{2}} \left(Du(x) I - \frac{\hbar}{\sqrt{m}} D \right).$$

- **Wigner quantal symmetries:**

$$\text{span} \left\{ \frac{1}{2} A^2, \frac{1}{2} (A^\dagger)^2, \mathcal{H} \right\} \oplus \text{span} \{ A, A^\dagger \}$$ is isomorphic to a **Lie superalgebra** $\mathfrak{osp}(1|2)$ (cf. N.F. & G. Ren (2011)).
Lie-algebraic discretization approaches enclosed on this talk:

- **Radial-type approach:** Starting from the Weyl-Heisenberg symmetries, this approach provides a way to represent the algebra of Clifford vector-valued polynomials as a set of finite difference operators possessing $\mathfrak{osp}(1|2)$ symmetries.

- **SUSY QM type approach:** A pair of finite difference operators (A_h, A_h^\dagger), obtained from the knowledge of a finite difference discretization $u_h(x)$ of $u(x)$, provides a way to discretize the Hamiltonian operator \mathcal{H} as $\mathcal{H}_h = -\frac{1}{2} \left(A_h A_h^\dagger + A_h^\dagger A_h \right)$.
Lie-algebraic discretization approaches enclosed on this talk:

- **Radial-type approach:** Starting from the Weyl-Heisenberg symmetries, this approach provides a way to represent the algebra of Clifford vector-valued polynomials as a set of finite difference operators possessing \(\mathfrak{osp}(1|2) \) symmetries.

- **SUSY QM type approach:** A pair of finite difference operators \((A_h, A_h^\dagger)\), obtained from the knowledge of a finite difference discretization \(u_h(x)\) of \(u(x)\), provides a way to discretize the Hamiltonian operator \(\mathcal{H}\) as \(\mathcal{H}_h = -\frac{1}{2} \left(A_hA_h^\dagger + A_h^\dagger A_h\right)\).
Finite difference toolbox

1. **Equidistant lattice with mesh width** $h > 0$:

$$h\mathbb{Z}^n = \left\{ x = (x_1, \ldots, x_n) \in \mathbb{R}^n : \frac{x}{h} \in \mathbb{Z}^n \right\}$$

2. **Forward/backward finite difference operators**

$$\left(\partial_h^{+j} f \right)(x) = \frac{f(x + h e_j) - f(x)}{h}, \quad \left(\partial_h^{-j} f \right)(x) = \frac{f(x) - f(x - h e_j)}{h}.$$

3. **Translation property**: ∂_h^{+j} and ∂_h^{-j} are interrelated by

$$(T_h^{\pm j} f)(x) = f(x \pm h e_j)$$ i.e.

$$T_h^{-j}(\partial_h^{+j} f)(x) = (\partial_h^{-j} f)(x) \quad \text{and} \quad T_h^{+j}(\partial_h^{-j} f)(x) = (\partial_h^{+j} f)(x).$$

4. **Product rules for finite difference operators**:

$$\partial_h^{+j} (g(x)f(x)) = (\partial_h^{+j} g)(x)f(x + h e_j) + g(x)(\partial_h^{+j} f)(x)$$

$$\partial_h^{-j} (g(x)f(x)) = (\partial_h^{-j} g)(x)f(x - h e_j) + g(x)(\partial_h^{-j} f)(x).$$
Finite difference toolbox

1. **Equidistant lattice with mesh width** $h > 0$:
 \[h\mathbb{Z}^n = \left\{ x = (x_1, \ldots, x_n) \in \mathbb{R}^n : \frac{x}{h} \in \mathbb{Z}^n \right\} \]

2. **Forward/backward finite difference operators**
 \[
 (\partial^+_j f)(x) = \frac{f(x + he_j) - f(x)}{h}, \quad (\partial^-_j f)(x) = \frac{f(x) - f(x - he_j)}{h}.
 \]

3. **Translation property**: ∂^+_j and ∂^-_j are interrelated by
 \[
 (T^\pm_j f)(x) = f(x \pm he_j) \quad \text{i.e.} \quad T^-_j(\partial^+_j f)(x) = (\partial^-_j f)(x) \quad \text{and} \quad T^+_j(\partial^-_j f)(x) = (\partial^+_j f)(x).
 \]

4. **Product rules for finite difference operators**:
 \[
 \partial^+_j (g(x)f(x)) = (\partial^+_j g)(x)f(x + he_j) + g(x)(\partial^+_j f)(x),
 \]
 \[
 \partial^-_j (g(x)f(x)) = (\partial^-_j g)(x)f(x - he_j) + g(x)(\partial^-_j f)(x).
 \]
Finite difference toolbox

1. **Equidistant lattice with mesh width** $h > 0$:

 $$h\mathbb{Z}^n = \left\{ x = (x_1, \ldots, x_n) \in \mathbb{R}^n : \frac{x}{h} \in \mathbb{Z}^n \right\}$$

2. **Forward/backward finite difference operators**

 $$(\partial^+_hf)(x) = \frac{f(x + he_j) - f(x)}{h}, \quad (\partial^-_hf)(x) = \frac{f(x) - f(x - he_j)}{h}.$$

3. **Translation property**: ∂^+_h and ∂^-_h are interrelated by

 $$(T^\pm_h f)(x) = f(x \pm he_j) \text{ i.e.}$$

 $$T^-_h(\partial^+_hf)(x) = (\partial^-_hf)(x) \quad \text{and} \quad T^+_h(\partial^-_hf)(x) = (\partial^+_hf)(x).$$

4. **Product rules for finite difference operators**:

 $$\partial^+_h (g(x)f(x)) = (\partial^+_h g)(x)f(x + he_j) + g(x)(\partial^+_h f)(x)$$

 $$\partial^-_h (g(x)f(x)) = (\partial^-_h g)(x)f(x - he_j) + g(x)(\partial^-_h f)(x).$$
Finite difference toolbox

1. **Equidistant lattice with mesh width** \(h > 0 \):
 \[
 h\mathbb{Z}^n = \left\{ x = (x_1, \ldots, x_n) \in \mathbb{R}^n : \frac{x}{h} \in \mathbb{Z}^n \right\}
 \]

2. **Forward/backward finite difference operators**
 \[
 (\partial_h^+ f)(x) = \frac{f(x + he_j) - f(x)}{h}, \quad (\partial_h^- f)(x) = \frac{f(x) - f(x - he_j)}{h}.
 \]

3. **Translation property**: \(\partial_h^+ \) and \(\partial_h^- \) are interrelated by
 \[
 (T_h^{\pm j} f)(x) = f(x \pm he_j) \quad \text{i.e.}

 T_h^{-j}(\partial_h^+ f)(x) = (\partial_h^- f)(x) \quad \text{and} \quad T_h^{+j}(\partial_h^- f)(x) = (\partial_h^+ f)(x).
 \]

4. **Product rules for finite difference operators**:
 \[
 \partial_h^+ (g(x)f(x)) = (\partial_h^+ g)(x)f(x + he_j) + g(x)(\partial_h^+ f)(x)
 \]
 \[
 \partial_h^- (g(x)f(x)) = (\partial_h^- g)(x)f(x - he_j) + g(x)(\partial_h^- f)(x).
 \]
Radial-type discretization
Lie-algebraic formulation

Radial-type approach: Study of finite difference operators belonging to the algebra

$$\text{Alg} \{ L_j, M_j, e_j : j = 1, \ldots, n \},$$

1. L_j and M_j are position and momentum operators, respectively, satisfying the set of Weyl-Heisenberg algebra relations

$$[L_j, L_k] = [M_j, M_k] = 0 \quad \text{and} \quad [L_j, M_k] = \delta_{jk} I$$

2. e_1, e_2, \ldots, e_n are the generators of the Clifford algebra of signature $(0, n)$.

Multivector operators: Basic left endomorphisms acting that act on functions with values on $\mathcal{C}_{\ell_0,n}$.

- Multivector derivative: $L = \sum_{j=1}^{n} e_j L_j$ stands the Lie-algebraic counterpart of the Dirac operator $D = \sum_{j=1}^{n} e_j \partial x_j$.

- Multivector multiplication: $M = \sum_{j=1}^{n} e_j M_j$ stands the Lie-algebraic counterpart for the left multiplication of $f(x)$ by a Clifford vector $x = \sum_{j=1}^{n} x_j e_j$.
Radial-type discretization
Lie-algebraic formulation

Radial-type approach: Study of finite difference operators belonging to the algebra

\[\text{Alg} \{ L_j, M_j, e_j : j = 1, \ldots, n \}, \]

1. \(L_j \) and \(M_j \) are position and momentum operators, respectively, satisfying the set of Weyl-Heisenberg algebra relations
\[[L_j, L_k] = [M_j, M_k] = 0 \text{ and } [L_j, M_k] = \delta_{jk} I \]

2. \(e_1, e_2, \ldots, e_n \) are the generators of the Clifford algebra of signature \((0, n)\).

Multivector operators: Basic left endomorphisms acting that act on functions with values on \(\mathcal{Cl}_{0,n} \).

- Multivector derivative: \(L = \sum_{j=1}^{n} e_j L_j \) stands the Lie-algebraic counterpart of the Dirac operator \(D = \sum_{j=1}^{n} e_j \partial x_j \).

- Multivector multiplication: \(M = \sum_{j=1}^{n} e_j M_j \) stands the Lie-algebraic counterpart for the left multiplication of \(f(x) \) by a Clifford vector \(x = \sum_{j=1}^{n} x_j e_j \).
Radial-type discretization

Lie-algebraic formulation

Radial-type approach: Study of finite difference operators belonging to the algebra

$$\text{Alg}\{L_j, M_j, e_j : j = 1, \ldots, n\},$$

1. L_j and M_j are position and momentum operators, respectively, satisfying the set of Weyl-Heisenberg algebra relations $[L_j, L_k] = [M_j, M_k] = 0$ and $[L_j, M_k] = \delta_{jk} I$.

2. e_1, e_2, \ldots, e_n are the generators of the Clifford algebra of signature $(0, n)$.

Multivector operators: Basic left endomorphisms acting that act on functions with values on $\mathbb{C}\ell_{0,n}$.

- **Multivector derivative:** $L = \sum_{j=1}^{n} e_j L_j$ stands the Lie-algebraic counterpart of the Dirac operator $D = \sum_{j=1}^{n} e_j \partial x_j$.

- **Multivector multiplication:** $M = \sum_{j=1}^{n} e_j M_j$ stands the Lie-algebraic counterpart for the left multiplication of $f(x)$ by a Clifford vector $x = \sum_{j=1}^{n} x_j e_j$.

Radial-type discretization
Lie-algebraic formulation

Radial-type approach: Study of finite difference operators belonging to the algebra

\[\text{Alg} \{ L_j, M_j, e_j : j = 1, \ldots, n \} , \]

1. \(L_j \) and \(M_j \) are position and momentum operators, respectively, satisfying the set of Weyl-Heisenberg algebra relations \([L_j, L_k] = [M_j, M_k] = 0 \) and \([L_j, M_k] = \delta_{jk} I \).

2. \(e_1, e_2, \ldots, e_n \) are the generators of the Clifford algebra of signature \((0, n)\).

Multivector operators: Basic left endomorphisms acting that act on functions with values on \(\mathbb{C}^{\ell_0, n} \).

- **Multivector derivative**: \(L = \sum_{j=1}^{n} e_j L_j \) stands the Lie-algebraic counterpart of the Dirac operator \(D = \sum_{j=1}^{n} e_j \partial x_j \).

- **Multivector multiplication**: \(M = \sum_{j=1}^{n} e_j M_j \) stands the Lie-algebraic counterpart for the left multiplication of \(f(x) \) by a Clifford vector \(x = \sum_{j=1}^{n} x_j e_j \).
Radial-type discretization

Examples

1. **Forward finite differences:** The set of operators ∂^{+j}_h and $x_j T^{-j}_h : f(x) \mapsto x_j f(x - h e_j)$ span the Weyl-Heisenberg algebra of dimension $2n + 1$. Moreover $D^+_h = \sum_{j=1}^{n} e_j \partial^{+j}_h$ and $X_h = \sum_{j=1}^{n} e_j x_j T^{-j}_h$ are the corresponding multivector ladder operators on the lattice $h \mathbb{Z}^n$.

2. **Backward finite differences:** ∂^{-j}_h and $x_j T^{+j}_h : f(x) \mapsto x_j f(x + h e_j)$ also span the Weyl-Heisenberg algebra of dimension $2n + 1$. This turns out $D^-_h = \sum_{j=1}^{n} e_j \partial^{-j}_h$ and $X^-_h = \sum_{j=1}^{n} e_j x_j T^{+j}_h$ as the corresponding multivector ladder operators on the lattice $h \mathbb{Z}^n$.

3. **Discretization of the Hermite operator:** D^+_h and $X_h - D^-_h$ is obtained from the set of ladder operators $L_j = \partial^{+j}_h$ and $L_j = x_j T^{-j}_h - \partial^{-j}_h$. Moreover $X_h - D^-_h$ approximates the Hermite operator $X - D = -\exp\left(\frac{|x|^2}{2}\right) D \exp\left(-\frac{|x|^2}{2}\right)$, as h tends to zero (cf. N.F., arXiv:1402.2268).
Radial-type discretization
Examples

1. **Forward finite differences**: The set of operators ∂_h^{+j} and $x_j T_h^{-j} : f(x) \mapsto x_j f(x - h e_j)$ span the Weyl-Heisenberg algebra of dimension $2n + 1$. Moreover $D_h^+ = \sum_{j=1}^n e_j \partial_h^{+j}$ and $X_h = \sum_{j=1}^n e_j x_j T_h^{-j}$ are the corresponding multivector ladder operators on the lattice $h \mathbb{Z}^n$.

2. **Backward finite differences**: ∂_h^{-j} and $x_j T_h^{+j} : f(x) \mapsto x_j f(x + h e_j)$ also span the Weyl-Heisenberg algebra of dimension $2n + 1$. This turns out $D_h^- = \sum_{j=1}^n e_j \partial_h^{-j}$ and $X_{-h} = \sum_{j=1}^n e_j x_j T_h^{+j}$ as the corresponding multivector ladder operators on the lattice $h \mathbb{Z}^n$.

3. **Discretization of the Hermite operator**: D_h^+ and $X_h - D_h^-$ is obtained from the set of ladder operators $L_j = \partial_h^{+j}$ and $L_j = x_j T_h^{-j} - \partial_h^{-j}$. Moreover $X_h - D_h^-$ approximates the Hermite operator $X - D = -\exp \left(\frac{|x|^2}{2} \right) D \exp \left(-\frac{|x|^2}{2} \right)$, as h tends to zero (cf. N.F., arXiv:1402.2268).
Radial-type discretization

Examples

1. **Forward finite differences:** The set of operators ∂_h^{-j} and $x_j T_h^{-j} : f(x) \mapsto x_j f(x - he_j)$ span the Weyl-Heisenberg algebra of dimension $2n + 1$. Moreover $D_h^+ = \sum_{j=1}^n e_j \partial_h^{+j}$ and $X_h = \sum_{j=1}^n e_j x_j T_h^{-j}$ are the corresponding multivector ladder operators on the lattice $h\mathbb{Z}^n$.

2. **Backward finite differences:** ∂_h^{-j} and $x_j T_h^{+j} : f(x) \mapsto x_j f(x + he_j)$ also span the Weyl-Heisenberg algebra of dimension $2n + 1$. This turns out $D_h^- = \sum_{j=1}^n e_j \partial_h^{-j}$ and $X_h^- = \sum_{j=1}^n e_j x_j T_h^{+j}$ as the corresponding multivector ladder operators on the lattice $h\mathbb{Z}^n$.

3. **Discretization of the Hermite operator:** D_h^+ and $X_h - D_h^-$ is obtained from the set of ladder operators $L_j = \partial_h^{+j}$ and $L_j = x_j T_h^{-j} - \partial_h^{-j}$. Moreover $X_h - D_h^-$ approximates the Hermite operator $X - D = -\exp\left(\frac{|x|^2}{2}\right) D \exp\left(-\frac{|x|^2}{2}\right)$, as h tends to zero (cf. N.F., arXiv:1402.2268).
Radial-type discretization
The Exponential Generating Function (EGF) approach

Many degrees of freedom for choose discretization operators:
(cf. N.F., SIGMA 9 (2013), 065) The set of operators
\[(x_j + \frac{h}{2}) T^+_h : f(x) \mapsto (x_j + \frac{h}{2}) f(x + he_j)\] and
\[(x_j - \frac{h}{2}) T^-_h : f(x) \mapsto (x_j - \frac{h}{2}) f(x - he_j)\] satisfy
\[
\left[\partial^{-j}_h, \left(x_k + \frac{h}{2} \right) T^+_h \right] = \left[\partial^{+j}_h, \left(x_k - \frac{h}{2} \right) T^-_h \right] = \delta_{jk} I
\]

cf. N.F., 2014, arxiv.org

The EGF of the form
\[
G_h(x, y; \kappa) = \prod_{j=1}^n \frac{1}{\kappa \left(\frac{1}{h} \log \left(1 + hy_j \right) \right)} \left(1 + hy_j \right)^{x_j/h}
\]
yield the set of operators \(L_j = \partial^{+j}_h \) and \(M_j = \left(x_j - \kappa' (\partial x_j) \kappa (\partial x_j)^{-1} \right) T^-_h \) as generators of the Weyl-Heisenberg algebra of dimension \(2n + 1 \). Moreover, they are unique.
Proposition (N.F., arXiv:1402.2268– Proposition 3.1)

Let $\kappa(t)$ defined as above and X_h the multiplication operator. If there is a multi-variable function $\lambda(y)$ ($y \in \mathbb{R}^n$) such that

$$
\lambda \left(\frac{D_h^+ \exp(x \cdot y)}{\exp(x \cdot y)} \right) = \prod_{j=1}^{n} \kappa(y_j)
$$

then the Fourier dual Λ_h of D_h^+ is given by

$$
\Lambda_h = X_h - \left[\log \lambda(D_h^+) , x \right].
$$

Remark: The multi-variable function $\lambda(y)$ ($y \in \mathbb{R}^n$) always exists and it is given by

$$
\lambda(y) = \prod_{j=1}^{n} \kappa \left(\frac{1}{h} \log(1 + hy_j) \right).
$$
Why one needs $\mathfrak{su}(1, 1)$ based symmetries?

The Weyl-Heisenberg symmetry breaking

Main Goal:

For a given polynomial $w(t)$ of degree 1, with $\mu = \partial_h^{+j} w(x_j) = \partial_h^{-j} w(x_j)$, study the spectra of the coupled eigenvalue problem

$$E_h^+ f(x) = E_h^- f(x) = \varepsilon f(x)$$

carrying $E_h^\pm = \sum_{j=1}^n \mu^{-1} w(x_j \pm \frac{h}{2}) \partial_h^\pm$.

- **Drawback:** The set of operators $\partial_h^{+j}, \partial_h^{-j}, W_h^{-j} = \mu^{-1} w(x_j + \frac{h}{2}) T_h^{-j}, W_h^{+j} = \mu^{-1} w(x_j + \frac{h}{2}) T_h^{+j}$ and I, with $j = 1, 2, \ldots, n$, do not endow a canonical realization of an Weyl-Heisenberg type algebra of dimension $4n + 1$.

- **Fill the Weyl-Heisenberg gap:** The set of operators $W_h^{-j} = \mu^{-1} w(x_j + \frac{h}{2}) T_h^{-j}, W_h^{+j} = \mu^{-1} w(x_j + \frac{h}{2}) T_h^{+j}$ and $W_j = \mu^{-1} w(x_j) I$ generate a Lie algebra isomorphic to $\mathfrak{sl}(2n, \mathbb{R})$ (N.F., SIGMA 9 (2013), 065–Lemma 1).
Hidden Symmetries in Discrete Clifford Analysis

Nelson Faustino

Starting with the Harmonic Oscillator

Exact solvability

Quantum Field setting

The multivector calculus approach

Lie-algebraic discretization

The Setting

Weyl-Heisenberg symmetries

\(su(1, 1) \) symmetries

The factorization approach

Overview

The star-Laplacian

The SUSY QM picture

Why one needs \(su(1, 1) \) based symmetries?
The Weyl-Heisenberg symmetry breaking

Main Goal:

For a given polynomial \(w(t) \) of degree 1, with \(\mu = \partial_h^{+j} w(x_j) = \partial_h^{-j} w(x_j) \), study the spectra of the coupled eigenvalue problem

\[
E_h^+ f(x) = E_h^- f(x) = \varepsilon f(x)
\]

carrying \(E_h^\pm = \sum_{j=1}^n \mu^{-1} w \left(x_j \pm \frac{h}{2} \right) \partial_h^\pm j \).

- **Drawback:** The set of operators
 \(\partial_h^{+j}, \partial_h^{-j}, W_h^{-j} = \mu^{-1} w \left(x_j + \frac{h}{2} \right) T_h^{-j}, W_h^{+j} = \mu^{-1} w \left(x_j + \frac{h}{2} \right) T_h^{+j} \) and \(I \),
 with \(j = 1, 2, \ldots, n \), do not endow a canonical realization of an Weyl-Heisenberg type algebra of dimension \(4n + 1 \).

- **Fill the Weyl-Heisenberg gap:** The set of operators
 \(W_h^{-j} = \mu^{-1} w \left(x_j + \frac{h}{2} \right) T_h^{-j}, W_h^{+j} = \mu^{-1} w \left(x_j + \frac{h}{2} \right) T_h^{+j} \) and
 \(W_j = \mu^{-1} w(x_j) I \) generate a Lie algebra isomorphic to \(sl(2n, \mathbb{R}) \)
 \((N.F., SIGMA 9 (2013), 065– Lemma 1) \).
Why one needs $\mathfrak{su}(1, 1)$ based symmetries?
The Weyl-Heisenberg symmetry breaking

Main Goal:

For a given polynomial $w(t)$ of degree 1, with $\mu = \partial^{+j}_h w(x_j) = \partial^{-j}_h w(x_j)$, study the spectra of the coupled eigenvalue problem

$$E^+_h f(x) = E^-_h f(x) = \epsilon f(x)$$

carrying $E^\pm_h = \sum_{j=1}^n \mu^{-1} w(x_j \pm \frac{\hbar}{2}) \partial^{\pm j}_h$.

- **Drawback:** The set of operators $\partial^{+j}_h, \partial^{-j}_h, W^-_h = \mu^{-1} w(x_j + \frac{\hbar}{2}) T^-_h, W^+_h = \mu^{-1} w(x_j + \frac{\hbar}{2}) T^+_h$ and I, with $j = 1, 2, \ldots, n$, do not endow a canonical realization of an Weyl-Heisenberg type algebra of dimension $4n + 1$.

- **Fill the Weyl-Heisenberg gap:** The set of operators $W^-_h = \mu^{-1} w(x_j + \frac{\hbar}{2}) T^-_h, W^+_h = \mu^{-1} w(x_j + \frac{\hbar}{2}) T^+_h$ and $W_j = \mu^{-1} w(x_j) I$ generate a Lie algebra isomorphic to $\mathfrak{sl}(2n, \mathbb{R})$

(N.F., SIGMA 9 (2013), 065–Lemma 1).
Hidden Symmetries in Discrete Clifford Analysis

Nelson Faustino

Starting with the Harmonic Oscillator
Exact solvability
Quantum Field setting
The multivector calculus approach
Lie-algebraic discretization
The Setting
Weyl-Heisenberg symmetries
$su(1, 1) \cong sl(2, \mathbb{R})$. The remaining commuting relations are given by

\[
\begin{bmatrix}
\frac{W_h^+}{h}, \frac{W_h^-}{h}
\end{bmatrix} = \frac{W_h^+}{h}, \quad \begin{bmatrix}
\frac{W_h^-}{h}, \frac{W_h^+}{h}
\end{bmatrix} = -\frac{W_h^-}{h}, \quad \begin{bmatrix}
\frac{W_h^+}{h}, \frac{W_h^-}{h}
\end{bmatrix} = \frac{2}{h} W.
\]

Casimir operator: The operator of the form

\[
K_h = \left(\frac{W}{h} \right)^2 - \frac{1}{2} \left(\frac{W_h^+}{h} \frac{W_h^-}{h} + \frac{W_h^-}{h} \frac{W_h^+}{h} \right)
\]

determines an irreducible unitary representation π_λ of $SU(1, 1)$ on the enveloping algebra $U(su(1, 1))$. This representation is labeled by the eigenvalues λ of K_h.

Discrete series representations of $SU(1, 1)$

The construction
Hidden Symmetries in Discrete Clifford Analysis
Nelson Faustino

Starting with the Harmonic Oscillator
Exact solvability
Quantum Field setting
The multivector calculus approach

Lie-algebraic discretization
The Setting
Weyl-Heisenberg symmetries
\(su(1, 1) \)
symmetries

The factorization approach
Overview
The star-Laplacian
The SUSY QM picture

Ladder operators on \(h\mathbb{Z}^n \): \(W_h^+ = \sum_{j=1}^n W_{hj}^+ \), \(W_h^- = \sum_{j=1}^n W_{hj}^- \) and \(W = \sum_{j=1}^n W_j \) generate a Lie algebra isomorphic to \(su(1, 1) \cong sl(2, \mathbb{R}) \). The remaining commuting relations are given by

\[
\begin{align*}
\left[\frac{W_h^+}{h}, \frac{W}{h} \right] &= \frac{W_h^+}{h}, \\
\left[\frac{W_h^-}{h}, \frac{W}{h} \right] &= -\frac{W_h^-}{h}, \\
\left[\frac{W_h^+}{h}, \frac{W_h^-}{h} \right] &= \frac{2}{h} W.
\end{align*}
\]

Casimir operator: The operator of the form

\[
K_h = \left(\frac{W}{h} \right)^2 - \frac{1}{2} \left(\frac{W_h^+}{h} \frac{W_h^-}{h} + \frac{W_h^-}{h} \frac{W_h^+}{h} \right)
\]
determines an irreducible unitary representation \(\pi_\lambda \) of \(SU(1, 1) \) on the enveloping algebra \(U(su(1, 1)) \). This representation is labeled by the eigenvalues \(\lambda \) of \(K_h \).
Discrete series representations of $SU(1, 1)$
Positive/Negative series representations

1. **Positive series representation of $SU(1,1)$:** π_λ^+ is thus determined by the set of ladder operators

\[
\begin{align*}
\pi_\lambda^+ \left(\frac{W_h^-}{h} \right) &= E_h^+ - E_h^- \\
\pi_\lambda^+ \left(\frac{W_h^+}{h} \right) &= \frac{W_h^+}{h} \\
\pi_\lambda^+ (W) &= E_h^+ + \frac{n}{2} I \\
\pi_\lambda^+ (K_h) &= \left(E_h^+ + \frac{n}{2} I \right) \left(E_h^+ + \left(\frac{n}{2} - 1 \right) I \right) - \frac{W_h^+}{h} (E_h^+ - E_h^-)
\end{align*}
\]

2. **Negative series representation of $SU(1,1)$:** π_λ^- is thus determined by the set of ladder operators

\[
\begin{align*}
\pi_\lambda^- \left(\frac{W_h^-}{h} \right) &= \frac{W_h^-}{h} \\
\pi_\lambda^- \left(\frac{W_h^+}{h} \right) &= E_h^+ - E_h^- \\
\pi_\lambda^- (W) &= -E_h^- - \frac{n}{2} I \\
\pi_\lambda^- (K_h) &= \left(E_h^- + \frac{n}{2} I \right) \left(E_h^- + \left(\frac{n}{2} - 1 \right) I \right) - \frac{W_h^-}{h} (E_h^+ - E_h^-)
\end{align*}
\]
Discrete series representations of $SU(1, 1)$

Positive/Negative series representations

1. Positive series representation of $SU(1,1)$: π^+_λ is thus determined by the set of ladder operators

\[
\begin{align*}
\pi^+_\lambda \left(\frac{W^-_h}{h} \right) &= E^+_h - E^-_h \\
\pi^+_\lambda \left(\frac{W^+_h}{h} \right) &= \frac{W^+_h}{h} \\
\pi^+_\lambda \left(\frac{W}{h} \right) &= E^+_h + \frac{n}{2} I \\
\pi^+_\lambda (K_h) &= (E^+_h + \frac{n}{2} I) (E^+_h + (\frac{n}{2} - 1) I) - \frac{W^+_h}{h} (E^+_h - E^-_h)
\end{align*}
\]

2. Negative series representation of $SU(1,1)$: π^-_λ is thus determined by the set of ladder operators

\[
\begin{align*}
\pi^-_\lambda \left(\frac{W^-_h}{h} \right) &= \frac{W^-_h}{h} \\
\pi^-_\lambda \left(\frac{W^+_h}{h} \right) &= E^+_h - E^-_h \\
\pi^-_\lambda \left(\frac{W}{h} \right) &= -E^-_h - \frac{n}{2} I \\
\pi^-_\lambda (K_h) &= (E^-_h + \frac{n}{2} I) (E^-_h + (\frac{n}{2} - 1) I) - \frac{W^-_h}{h} (E^+_h - E^-_h)
\end{align*}
\]
Invariant subspaces $\mathcal{H}_{s;h}$: Spaces with basic polynomials of the form $w_s(x; h) = \left(\frac{W_+}{h} \right)^s m_0(x; h)$, with $E^+_h m_0(x; h) = E^-_h m_0(x; h) = 0$.

Invariant subspaces $\mathcal{H}_{s;-h}$: Spaces with basic polynomials of the form $w_s(x; -h) = \left(\frac{W_-}{h} \right)^s m_0(x; h)$, with $E^+_h m_0(x; h) = E^-_h m_0(x; h) = 0$.

Irreducible subspaces: The $SO(n)$ invariant subspaces of the form $\left(\frac{W_+}{h} \right)^r (\mathcal{H}_{s-r;h} \cap \mathcal{H}_{s-r;-h})$ resp. $\left(\frac{W_-}{h} \right)^r (\mathcal{H}_{s-r;h} \cap \mathcal{H}_{s-r;-h})$.

Fourier decomposition of $\mathcal{H}_{s;\pm h}$: is determined from the Howe dual pair $(SO(1, 1), su(1, 1))$. as a direct sum of the $(s + 1)$ irreducible pieces $\left(\frac{W_{\pm}}{h} \right)^r (\mathcal{H}_{s-r;h} \cap \mathcal{H}_{s-r;-h})$.
● **Invariant subspaces** $\mathcal{H}_{s; h}$: Spaces with basic polynomials of the form $w_s(x; h) = \left(\frac{w^+_h}{h}\right)^s m_0(x; h)$, with

$$E^+_h m_0(x; h) = E^-_h m_0(x; h) = 0.$$

● **Invariant subspaces** $\mathcal{H}_{s; -h}$: Spaces with basic polynomials of the form $w_s(x; -h) = \left(\frac{w^-_h}{h}\right)^s m_0(x; h)$, with

$$E^+_h m_0(x; h) = E^-_h m_0(x; h) = 0.$$

● **Irreducible subspaces**: The $SO(n)$—invariant subspaces of the form $\left(\frac{w^+_h}{h}\right)^r (\mathcal{H}_{s-r; h} \cap \mathcal{H}_{s-r; -h})$ resp. $\left(\frac{w^-_h}{h}\right)^r (\mathcal{H}_{s-r; h} \cap \mathcal{H}_{s-r; -h})$.

● **Fourier decomposition of $\mathcal{H}_{s; \pm h}$**: is determined from the Howe dual pair $(SO(1, 1), su(1, 1))$ as a direct sum of the $(s + 1)$—irreducible pieces $\left(\frac{w^\pm_h}{h}\right)^r (\mathcal{H}_{s-r; h} \cap \mathcal{H}_{s-r; -h})$.

The Howe dual pair technique

N.F. SIGMA 9 (2013), 065
Hidden
Symmetries in
Discrete Clifford
Analysis
Nelson Faustino

Starting with the
Harmonic
Oscillator
Exact solvability
Quantum Field
setting
The multivector
calculus approach
Lie-algebraic
discretization
The Setting
Weyl-Heisenberg
symmetries
$su(1,1)$
symmetries
The factorization
approach
Overview
The star-Laplacian
The SUSY QM
picture

Invariant subspaces $\mathcal{H}_{s;h}$: Spaces with basic polynomials of the form $w_s(x; h) = \left(\frac{w^+_h}{h} \right)^s m_0(x; h)$, with

$E^+_h m_0(x; h) = E^-_h m_0(x; h) = 0$.

Invariant subspaces $\mathcal{H}_{s;-h}$: Spaces with basic polynomials of the form $w_s(x; -h) = \left(\frac{w^-_h}{h} \right)^s m_0(x; h)$, with

$E^+_h m_0(x; h) = E^-_h m_0(x; h) = 0$.

Irreducible subspaces: The $SO(n)$—invariant subspaces of the form $\left(\frac{w^+_h}{h} \right)^r (\mathcal{H}_{s-r;h} \cap \mathcal{H}_{s-r;-h})$ resp. $\left(\frac{w^-_h}{h} \right)^r (\mathcal{H}_{s-r;h} \cap \mathcal{H}_{s-r;-h})$.

Fourier decomposition of $\mathcal{H}_{s;\pm h}$: is determined from the Howe dual pair $(SO(1,1), su(1,1))$, as a direct sum of the $(s+1)$—irreducible pieces $\left(\frac{w^{\pm}_h}{h} \right)^r (\mathcal{H}_{s-r;h} \cap \mathcal{H}_{s-r;-h})$.
The Howe dual pair technique
N.F. SIGMA 9 (2013), 065

- **Invariant subspaces** \(\mathcal{H}_{s; h} \): Spaces with basic polynomials of the form
 \[w_s(x; h) = \left(\frac{w^+}{h} \right)^s m_0(x; h), \]
 with
 \[E^+_h m_0(x; h) = E^-_h m_0(x; h) = 0. \]
- **Invariant subspaces** \(\mathcal{H}_{s; -h} \): Spaces with basic polynomials of the form
 \[w_s(x; -h) = \left(\frac{w^-}{h} \right)^s m_0(x; h), \]
 with
 \[E^+_h m_0(x; h) = E^-_h m_0(x; h) = 0. \]

- **Irreducible subspaces:** The \(SO(n) \)-invariant subspaces of the form
 \(\left(w^+_h \right)^r (\mathcal{H}_{s-r; h} \cap \mathcal{H}_{s-r; -h}) \) resp.
 \(\left(w^-_h \right)^r (\mathcal{H}_{s-r; h} \cap \mathcal{H}_{s-r; -h}) \).

- **Fourier decomposition of** \(\mathcal{H}_{s; \pm h} \): is determined from the Howe dual pair \((SO(1, 1), \mathfrak{su}(1, 1)) \) as a direct sum of the \((s + 1)-\)irreducible pieces
 \(\left(w^{\pm}_h \right)^r (\mathcal{H}_{s-r; h} \cap \mathcal{H}_{s-r; -h}) \).
Overview

Why must we use Lie-algebraic based discretizations?

Lie-algebraic based discretizations:

1. **Preserve canonical symmetries:** Get exact representation formulae for the polynomial solutions from methods already known in *continuum*;

2. **Deep understanding of physical models:** Provides a general scheme to construct sequences of polynomials as eigenfunctions of a discrete Hamiltonian operator.

3. **Application to Cauchy problems:** The 1-parameter representation of $SU(1, 1)$ produces solutions of homogeneous Cauchy-problems as hypergeometric series representations (cf. *N.F.*, *SIGMA* 065, 2013–Section 4).

4. **Provides an operational framework:** The construction polynomials on the lattice based on the knowledge of the EGF makes intuitive and fully rigorous the study special functions and integral transforms on the lattice (cf. *N.F.*, arXiv:1402.2268–Subsection 3.3).
Overview
Why must we use Lie-algebraic based discretizations?

Lie-algebraic based discretizations:

1. **Preserve canonical symmetries:** Get exact representation formulae for the polynomial solutions from methods already known in *continuum*;

2. **Deep understanding of physical models:** Provides a general scheme to construct sequences of polynomials as eigenfunctions of a discrete Hamiltonian operator.

3. **Application to Cauchy problems:** The 1-parameter representation of $SU(1, 1)$ produces solutions of homogeneous Cauchy-problems as hypergeometric series representations (cf. *N.F., SIGMA 065, 2013– Section 4*).

4. **Provides an operational framework:** The construction polynomials on the lattice based on the knowledge of the EGF makes intuitive and fully rigorous the study special functions and integral transforms on the lattice (cf. *N.F., arXiv:1402.2268– Subsection 3.3*).
Overview
Why must we use Lie-algebraic based discretizations?

Lie-algebraic based discretizations:

1. **Preserve canonical symmetries:** Get exact representation formulae for the polynomial solutions from methods already known in *continuum*;

2. **Deep understanding of physical models:** Provides a general scheme to construct sequences of polynomials as eigenfunctions of a discrete Hamiltonian operator.

3. **Application to Cauchy problems:** The 1-parameter representation of $SU(1, 1)$ produces solutions of homogeneous Cauchy-problems as hypergeometric series representations (cf. N.F., *SIGMA 065, 2013– Section 4*).

4. **Provides an operational framework:** The construction polynomials on the lattice based on the knowledge of the EGF makes intuitive and fully rigorous the study special functions and integral transforms on the lattice (cf. N.F., arXiv:1402.2268– Subsection 3.3).
Overview
Why must we use Lie-algebraic based discretizations?

Lie-algebraic based discretizations:

1. **Preserve canonical symmetries:** Get exact representation formulae for the polynomial solutions from methods already known in *continuum*;

2. **Deep understanding of physical models:** Provides a general scheme to construct sequences of polynomials as eigenfunctions of a discrete Hamiltonian operator.

3. **Application to Cauchy problems:** The 1-parameter representation of $SU(1, 1)$ produces solutions of homogeneous Cauchy-problems as hypergeometric series representations (cf. *N.F., SIGMA 065, 2013– Section 4*).

4. **Provides an operational framework:** The construction polynomials on the lattice based on the knowledge of the EGF makes intuitive and fully rigorous the study special functions and integral transforms on the lattice (cf. *N.F., arXiv:1402.2268– Subsection 3.3*).
Star Laplacian:

\[
\Delta_h f(x) = \sum_{j=1}^{n} \frac{f(x + he_j) + f(x - he_j) - 2f(x)}{h^2}
\]

- **Finite difference representation:** \(\Delta_h = \sum_{j=1}^{n} \frac{\partial_{h}^{+j} \partial_{h}^{-j}}{h^2} = \sum_{j=1}^{n} \frac{1}{h^2} \left(\partial_{h}^{+j} - \partial_{h}^{-j} \right) \).
- **Using forward and backward Dirac operators:** \(\Delta_h = -\frac{1}{2} \left(D_{h}^{+} D_{h}^{-} + D_{h}^{-} D_{h}^{+} \right) \).
- **Using a central difference Dirac operator:** \(\Delta_h = -\frac{1}{4} \left(D_{h/2}^{+} + D_{h/2}^{-} \right)^2 \).
- **An alternative factorization:** See e.g. my recent preprint [arXiv:1407.3233](https://arxiv.org/abs/1407.3233) and the references given there.

Figure: The star laplacian in \(h\mathbb{Z}^3 \)
Star Laplacian:

\[
\Delta_h f(x) = \sum_{j=1}^{n} \frac{f(x + he_j) + f(x - he_j) - 2f(x)}{h^2}
\]

1. **Finite difference representation:** \(\Delta_h = \sum_{j=1}^{n} \partial_h^{+j} \partial_h^{-j} = \sum_{j=1}^{n} \frac{1}{h} (\partial_h^{+j} - \partial_h^{-j}) \).

2. **Using forward and backward Dirac operators:** \(\Delta_h = -\frac{1}{2} (D_h^+ D_h^- + D_h^- D_h^+) \)

3. **Using a central difference Dirac operator:** \(\Delta_h = -\frac{1}{4} \left(D_{h/2}^+ + D_{h/2}^- \right)^2 \)

4. **An alternative factorization:** See e.g. my recent preprint [arXiv:1407.3233](http://arxiv.org/abs/1407.3233) and the references given there.

Figure: The star laplacian in \(h\mathbb{Z}^3 \)
Star Laplacian:

\[\Delta_h f(x) = \sum_{j=1}^{n} \frac{f(x + h e_j) + f(x - h e_j) - 2f(x)}{h^2} \]

1. **Finite difference representation:** \(\Delta_h = \sum_{j=1}^{n} \partial^+_h \partial^-_j = \sum_{j=1}^{n} \frac{1}{h} \left(\partial^+_h - \partial^-_j \right) \).

2. Using forward and backward Dirac operators: \(\Delta_h = -\frac{1}{2} \left(D^+_h D^-_h + D^-_h D^+_h \right) \)

3. Using a central difference Dirac operator: \(\Delta_h = -\frac{1}{4} \left(D^+_h D^-_{h/2} + D^-_{h/2} D^+_h \right)^2 \)

4. An alternative factorization: See e.g. my recent preprint arXiv:1407.3233 and the references given there.
Star Laplacian:

\[\Delta_h f(x) = \sum_{j=1}^{n} \frac{f(x + he_j) + f(x - he_j) - 2f(x)}{h^2} \]

1. **Finite difference representation:** \(\Delta_h = \sum_{j=1}^{n} \partial_h^{+j} \partial_h^{-j} = \sum_{j=1}^{n} \frac{1}{h} \left(\partial_h^{+j} - \partial_h^{-j} \right) \).

2. **Using forward and backward Dirac operators:** \(\Delta_h = -\frac{1}{2} (D_h^+ D_h^- + D_h^- D_h^+) \)

3. **Using a central difference Dirac operator:** \(\Delta_h = -\frac{1}{4} \left(D_{h/2}^+ + D_{h/2}^- \right)^2 \)

4. **An alternative factorization:** See e.g. my recent preprint [arXiv:1407.3233](http://arxiv.org/abs/1407.3233) and the references given there.

Figure: The star laplacian in \(h\mathbb{Z}^3 \)
Star Laplacian:

\[\Delta_h f(x) = \sum_{j=1}^{n} \frac{f(x + h\mathbf{e}_j) + f(x - h\mathbf{e}_j) - 2f(x)}{h^2} \]

1. **Finite difference representation:**
 \[\Delta_h = \sum_{j=1}^{n} \partial_h^{+j} \partial_h^{-j} = \sum_{j=1}^{n} \frac{1}{h} \left(\partial_h^{+j} - \partial_h^{-j} \right) . \]

2. **Using forward and backward Dirac operators:**
 \[\Delta_h = -\frac{1}{2} \left(D_h^+ D_h^- + D_h^- D_h^+ \right) \]

3. **Using a central difference Dirac operator:**
 \[\Delta_h = -\frac{1}{4} \left(D_{h/2}^+ + D_{h/2}^- \right)^2 \]

4. **An alternative factorization:**
 See e.g. my recent preprint [arXiv:1407.3233](https://arxiv.org/abs/1407.3233) and the references given there.

Figure: The star laplacian in \(h\mathbb{Z}^3 \)
Star-Laplacian
Factorization in $\mathbb{C}_{0,n}$

Star Laplacian:

$$\Delta_h f(x) = \sum_{j=1}^{n} \frac{f(x + h e_j) + f(x - h e_j) - 2f(x)}{h^2}$$

1. **Finite difference representation:**
 $$\Delta_h = \sum_{j=1}^{n} \partial_{h}^{+j} \partial_{h}^{-j} = \sum_{j=1}^{n} \frac{1}{h} \left(\partial_{h}^{+j} - \partial_{h}^{-j} \right).$$

2. **Using forward and backward Dirac operators:**
 $$\Delta_h = -\frac{1}{2} \left(D_{h}^{+} D_{h}^{-} + D_{h}^{-} D_{h}^{+} \right)$$

3. **Using a central difference Dirac operator:**
 $$\Delta_h = -\frac{1}{4} \left(D_{h/2}^{+} + D_{h/2}^{-} \right)^2$$

4. **An alternative factorization:** See e.g. my recent preprint [arXiv:1407.3233](http://arxiv.org/abs/1407.3233) and the references given there.
Star-Laplacian
Factorization in $\mathcal{C}_{0,n}$

Star Laplacian:

$$\Delta_h f(x) = \sum_{j=1}^{n} \frac{f(x + h e_j) + f(x - h e_j) - 2f(x)}{h^2}$$

1. **Finite difference representation:**
 \[\Delta_h = \sum_{j=1}^{n} \partial_h^{+j} \partial_h^{-j} = \sum_{j=1}^{n} \frac{1}{h} \left(\partial_h^{+j} - \partial_h^{-j} \right). \]

2. **Using forward and backward Dirac operators:**
 \[\Delta_h = -\frac{1}{2} \left(D^+_h D^-_h + D^-_h D^+_h \right) \]

3. **Using a central difference Dirac operator:**
 \[\Delta_h = -\frac{1}{4} \left(D^+_{h/2} + D^-_{h/2} \right)^2 \]

4. **An alternative factorization:**
 See e.g. my recent preprint arXiv:1407.3233 and the references given there.

Figure: The star laplacian in $\hbar \mathbb{Z}^3$
Hamiltonian operator:

$$\mathcal{H}_h = -\frac{\hbar^2}{m} \Delta_h + V(M), \quad M = \sum_{j=1}^n e_j M_j$$

- Star laplacian factorization: $$\Delta_h = -\frac{1}{4} \left(D^+_{h/2} + D^-_{h/2} \right)^2$$

- Weyl-Heisenberg constraint: $$\left[\frac{1}{2} \left(\partial^+_h + \partial^-_h \right), M_k \right] = \delta_{jk} l$$

- Ladder operators:

 $$A_h = \frac{1}{\sqrt{2}} \left(D u(M) + \frac{\hbar}{2\sqrt{m}} \left(D^+_{h/2} + D^-_{h/2} \right) \right)$$

 $$A^+_h = \frac{1}{\sqrt{2}} \left(D u(M) - \frac{\hbar}{2\sqrt{m}} \left(D^+_{h/2} + D^-_{h/2} \right) \right)$$

Remarks:

- The Weyl-Heisenberg symmetries leave invariant the exact solvability of the system.
- **Isotropy** is not preserved under the Weyl-Heisenberg discretization scheme.
Hidden Symmetries in Discrete Clifford Analysis

Nelson Faustino

Starting with the Harmonic Oscillator
Exact solvability
Quantum Field setting
The multivector calculus approach

Lie-algebraic discretization
The Setting
Weyl-Heisenberg symmetries
\(su(1,1) \) symmetries

The factorization approach
Overview
The star-Laplacian
The SUSY QM picture

Discrete Quantum Mechanics
Exact solvability by means of the Weyl-Heisenberg picture

Hamiltonian operator:

\[
\mathcal{H}_h = -\frac{\hbar^2}{m} \Delta_h + V(M), \quad M = \sum_{j=1}^{n} e_j M_j
\]

- **Star laplacian factorization:**
 \[
 \Delta_h = -\frac{1}{4} \left(D_{h/2}^+ + D_{h/2}^- \right)^2
 \]

- **Weyl-Heisenberg constraint:**
 \[
 \left[\frac{1}{2} \left(\partial_{h/2}^+ + \partial_{h/2}^- \right), M_k \right] = \delta_{jk} I
 \]

- **Ladder operators:**
 \[
 A_h = \frac{1}{\sqrt{2}} \left(D_u(M) + \frac{\hbar}{2\sqrt{m}} \left(D_{h/2}^+ + D_{h/2}^- \right) \right)

 A_{h}^\dagger = \frac{1}{\sqrt{2}} \left(D_u(M) - \frac{\hbar}{2\sqrt{m}} \left(D_{h/2}^+ + D_{h/2}^- \right) \right)
 \]

Remarks:

- The Weyl-Heisenberg symmetries leave invariant the exact solvability of the system.

- **Isotropy** is not preserved under the Weyl-Heisenberg discretization scheme.
Discrete Quantum Mechanics

Exact solvability by means of the Weyl-Heisenberg picture

Hamiltonian operator:

\[\mathcal{H}_h = -\frac{\hbar^2}{m} \Delta_h + V(M), \quad M = \sum_{j=1}^n e_j M_j \]

- **Star laplacian factorization**: \[\Delta_h = -\frac{1}{4} \left(D_{h/2}^+ + D_{h/2}^- \right)^2 \]
- **Weyl-Heisenberg constraint**: \[\left[\frac{1}{2} \left(\partial_{h/2}^+ + \partial_{h/2}^- \right), M_k \right] = \delta_{jk} I \]
- **Ladder operators**: \[A_h = \frac{1}{\sqrt{2}} \left(D_u(M) + \frac{\hbar}{2\sqrt{m}} \left(D_{h/2}^+ + D_{h/2}^- \right) \right) \]
\[A_h^\dagger = \frac{1}{\sqrt{2}} \left(D_u(M) - \frac{\hbar}{2\sqrt{m}} \left(D_{h/2}^+ + D_{h/2}^- \right) \right) \]

Remarks:

- The Weyl-Heisenberg symmetries leave invariant the exact solvability of the system.
- **Isotropy** is not preserved under the Weyl-Heisenberg discretization scheme.
Discrete Quantum Mechanics
Exact solvability by means of the Weyl-Heisenberg picture

Hamiltonian operator:

\[\mathcal{H}_h = -\frac{\hbar^2}{m} \Delta_h + V(M), \quad M = \sum_{j=1}^{n} e_j M_j \]

- Star laplacian factorization: \(\Delta_h = -\frac{1}{4} \left(D_{h/2}^+ + D_{h/2}^- \right)^2 \)
- Weyl-Heisenberg constraint: \(\left[\frac{1}{2} \left(\partial_{h/2}^+ + \partial_{h/2}^- \right), M_k \right] = \delta_{jk} \)
- Ladder operators:

\[
\begin{align*}
A_h &= \frac{1}{\sqrt{2}} \left(D_u(M) + \frac{\hbar}{2\sqrt{m}} \left(D_{h/2}^+ + D_{h/2}^- \right) \right) \\
A_h^\dagger &= \frac{1}{\sqrt{2}} \left(D_u(M) - \frac{\hbar}{2\sqrt{m}} \left(D_{h/2}^+ + D_{h/2}^- \right) \right)
\end{align*}
\]

Remarks:

- The Weyl-Heisenberg symmetries leave invariant the exact solvability of the system.
- \textbf{Isotropy} is not preserved under the Weyl-Heisenberg discretization scheme.
Hidden Symmetries in Discrete Clifford Analysis

Nelson Faustino

Starting with the Harmonic Oscillator

Quantum Field setting

The multivector calculus approach

Lie-algebraic discretization

The Setting

Weyl-Heisenberg symmetries

\(\mathfrak{su}(1,1) \) symmetries

The factorization approach

Overview

The star-Laplacian approach

Discrete Quantum Mechanics

Exact solvability by means of the Weyl-Heisenberg picture

Hamiltonian operator:

\[
\mathcal{H}_h = -\frac{\hbar^2}{m} \Delta_h + V(M), \quad M = \sum_{j=1}^{n} e_j M_j
\]

- **Star laplacian factorization:** \(\Delta_h = -\frac{1}{4} \left(D_{h/2}^+ + D_{h/2}^- \right)^2 \)

- **Weyl-Heisenberg constraint:**

\[
\left[\frac{1}{2} \left(\partial_{h/2}^+ + \partial_{h/2}^- \right), M_k \right] = \delta_{jk} I
\]

- **Ladder operators:**

\[
A_h = \frac{1}{\sqrt{2}} \left(D\mu(M) + \frac{\hbar}{2\sqrt{m}} \left(D_{h/2}^+ + D_{h/2}^- \right) \right)
\]

\[
A_h^\dagger = \frac{1}{\sqrt{2}} \left(D\mu(M) - \frac{\hbar}{2\sqrt{m}} \left(D_{h/2}^+ + D_{h/2}^- \right) \right)
\]

Remarks:

- The Weyl-Heisenberg symmetries leave invariant the exact solvability of the system.

- **Isotropy** is not preserved under the Weyl-Heisenberg discretization scheme.
Discrete Quantum Mechanics
The SUSY approach

Hamiltonian operator:

\[\mathcal{H}_h = -\frac{\hbar^2}{m} J_h + V_h(x) \]

- Hamiltonian Constraint: \[\mathcal{H}_h = -\frac{1}{2} \left(A_h A_h^\dagger + A_h^\dagger A_h \right) \]

- Ladder operators:

\[A_h = \frac{1}{\sqrt{2}} \left(\left[D_h^+, u_h(x) \right] + \frac{\hbar}{\sqrt{m}} D_h^+ \right) \]

\[A_h^\dagger = \frac{1}{\sqrt{2}} \left(\left[D_h^-, u_h(x) \right] - \frac{\hbar}{\sqrt{m}} D_h^- \right) \]

- Exact solvability constraint:

\[V_h(x) = -\frac{1}{4} \left[(D_h^+ u_h) (x) \right]^2 - \frac{1}{4} \left[(D_h^- u_h) (x) \right]^2 \]

- Jacobi-type operator:

\[J_h = \Delta_h + \frac{\sqrt{m}}{\hbar} \sum_{j=1}^{n} \left(\partial_h^{+j} u_h \right) (x) \partial_h^{+j} - \frac{\sqrt{m}}{\hbar} \sum_{j=1}^{n} \left(\partial_h^{-j} u_h \right) (x) \partial_h^{-j} \]
Hamiltonian operator:

\[
\mathcal{H}_h = -\frac{\hbar^2}{m} J_h + V_h(x)
\]

- **Hamiltonian Constraint:** \(\mathcal{H}_h = -\frac{1}{2} \left(A_h A_h^\dagger + A_h^\dagger A_h \right) \).

- **Ladder operators:**

\[
A_h = \frac{1}{\sqrt{2}} \left([D_h^+, u_h(x)] + \frac{\hbar}{\sqrt{m}} D_h^+ \right)
\]

\[
A_h^\dagger = \frac{1}{\sqrt{2}} \left([D_h^-, u_h(x)] - \frac{\hbar}{\sqrt{m}} D_h^- \right)
\]

- **Exact solvability constraint:**

\[
V_h(x) = -\frac{1}{4} \left[(D_h^+ u_h)(x) \right]^2 - \frac{1}{4} \left[(D_h^- u_h)(x) \right]^2
\]

- **Jacobi-type operator:**

\[
J_h = \Delta_h + \frac{\sqrt{m}}{\hbar} \sum_{j=1}^{n} \left(\partial_h^{+j} u_h \right)(x) \partial_h^{+j} - \frac{\sqrt{m}}{\hbar} \sum_{j=1}^{n} \left(\partial_h^{-j} u_h \right)(x) \partial_h^{-j}
\]
Hamiltonian operator:

\[\mathcal{H}_h = -\frac{\hbar^2}{m} J_h + V_h(x) \]

- **Hamiltonian Constraint:** \(\mathcal{H}_h = -\frac{1}{2} \left(A_h A^\dagger_h + A^\dagger_h A_h \right) \).
- **Ladder operators:**
 \[
 A_h = \frac{1}{\sqrt{2}} \left([D^+_h, u_h(x)] + \frac{\hbar}{\sqrt{m}} D^+_h \right) \\
 A^\dagger_h = \frac{1}{\sqrt{2}} \left([D^-_h, u_h(x)] - \frac{\hbar}{\sqrt{m}} D^-_h \right)
 \]
- **Exact solvability constraint:**
 \[
 V_h(x) = -\frac{1}{4} \left([D^+_h u_h(x)] \right)^2 - \frac{1}{4} \left([D^-_h u_h(x)] \right)^2
 \]
- **Jacobi-type operator:**
 \[
 J_h = \Delta_h + \frac{\sqrt{m}}{\hbar} \sum_{j=1}^n \left(\partial_h^+ j u_h \right) (x) \partial_h^+ - \frac{\sqrt{m}}{\hbar} \sum_{j=1}^n \left(\partial_h^- j u_h \right) (x) \partial_h^-
 \]
Discrete Quantum Mechanics
The SUSY approach

Hamiltonian operator:

\[\mathcal{H}_h = -\frac{\hbar^2}{m} J_h + V_h(x) \]

- **Hamiltonian Constraint:** \(\mathcal{H}_h = -\frac{1}{2} \left(A_h A_h^\dagger + A_h^\dagger A_h \right) \).

- **Ladder operators:**
 \[
 A_h = \frac{1}{\sqrt{2}} \left([D_h^+, u_h(x)] + \frac{\hbar}{\sqrt{m}} D_h^+ \right) \\
 A_h^\dagger = \frac{1}{\sqrt{2}} \left([D_h^-, u_h(x)] - \frac{\hbar}{\sqrt{m}} D_h^- \right)
 \]

- **Exact solvability constraint:**
 \[V_h(x) = -\frac{1}{4} \left((D_h^+ u_h(x)) \right)^2 - \frac{1}{4} \left((D_h^- u_h(x)) \right)^2 \]

- **Jacobi-type operator:**
 \[J_h = \Delta_h + \frac{\sqrt{m}}{\hbar} \sum_{j=1}^{n} \left(\partial_h^{+j} u_h \right)(x) \partial_h^{+j} - \frac{\sqrt{m}}{\hbar} \sum_{j=1}^{n} \left(\partial_h^{-j} u_h \right)(x) \partial_h^{-j} \]
Ongoing Research

- **Break of the Weyl-Heisenberg symmetries**: When \(u_h(x) \) is a polynomial of degree 2, the components of \(A_h \) and \(A_h^\dagger \),

\[
A_h^i = \frac{1}{\sqrt{2}} \left(\left(\partial_h^+ u_h \right)(x) T_h^+ + \frac{\hbar}{\sqrt{m}} \partial_h^+ \right) \quad \text{and} \quad A_h^{\dagger j} = \frac{1}{\sqrt{2}} \left(\left(\partial_h^- u_h \right)(x) T_h^- - \frac{\hbar}{\sqrt{m}} \partial_h^- \right),
\]

respectively, do not encode Weyl-Heisenberg symmetries – as in continuum – but instead \(su(1,1) \) symmetries.

- **Beyond the De Donder-Weyl approach**: \(z = q + ip \mapsto A_h \) and \(z^\dagger = q - ip \mapsto A_h^\dagger \), where \(q = \sum_{j=1}^{n} q_j e_j \) and \(p = \sum_{j=1}^{n} p_j e_j \) are 'polymomenta' representations for the phase space, produces a meson-type quantization (cf. G. Wentzel, *Quantum Theory of Fields*, (1949))

- **Open problems**: What kind of Lie-algebraic representations arise from 'De Donder-Weyl approach'? Are all they unitarily equivalent to \(su(1,1) \) or even to the Lie superalgebra \(sl(2|1) \) (see, for instance, Jafarov– Van der Jeugt recent papers/preprints)?
Ongoing Research

- **Break of the Weyl-Heisenberg symmetries:** When $u_h(x)$ is a polynomial of degree 2, the components of A_h and A_h^\dagger,

 $A_h^i = \frac{1}{\sqrt{2}} \left((\partial^+_h u_h)(x) \right. T^+_h + \frac{\hbar}{\sqrt{m}} \partial^+_h \left. \right)$ and

 $A_h^{\dagger j} = \frac{1}{\sqrt{2}} \left((\partial^-_h u_h)(x) \right. T^-_h - \frac{\hbar}{\sqrt{m}} \partial^-_h \left. \right)$, respectively, do not encode Weyl-Heisenberg symmetries – as in continuum – but instead $su(1, 1)$ symmetries.

- **Beyond the De Donder-Weyl approach:** $z = q + ip \mapsto A_h$ and $z^\dagger = q - ip \mapsto A_h^\dagger$, where $q = \sum_{j=1}^n q_je_j$ and $p = \sum_{j=1}^n p_je_j$ are 'polymomenta' representations for the phase space, produces a meson-type quantization (cf. G. Wentzel, *Quantum Theory of Fields*, (1949))

- **Open problems:** What kind of Lie-algebraic representations arise from 'De Donder-Weyl approach'? Are all they unitarily equivalent to $su(1, 1)$ or even to the Lie superalgebra $sl(2|1)$ (see, for instance, Jafarov– Van der Jeugt recent papers/preprints)?
Ongoing Research

- **Break of the Weyl-Heisenberg symmetries:** When \(u_h(x) \) is a polynomial of degree 2, the components of \(A_h \) and \(A_h^\dagger \),

\[
A_h^i = \frac{1}{\sqrt{2}} \left((\partial^+ h u_h) (x) \ T^+_h + \frac{\hbar}{\sqrt{m}} \partial^+_h \right)
\]

and

\[
A_h^{\dagger j} = \frac{1}{\sqrt{2}} \left((\partial^- h u_h) (x) \ T^-_h - \frac{\hbar}{\sqrt{m}} \partial^-_h \right),
\]

respectively, do not encode Weyl-Heisenberg symmetries – as in continuum – but instead \(su(1, 1) \) symmetries.

- **Beyond the De Donder-Weyl approach:** \(z = q + ip \mapsto A_h \) and \(z^\dagger = q - ip \mapsto A_h^\dagger \), where \(q = \sum_{j=1}^n q_j e_j \) and \(p = \sum_{j=1}^n p_j e_j \) are ‘polymomenta’ representations for the phase space, produces a meson-type quantization (cf. G. Wentzel, *Quantum Theory of Fields*, (1949))

- **Open problems:** What kind of Lie-algebraic representations arise from ’De Donder-Weyl approach’? Are all they unitarily equivalent to \(su(1, 1) \) or even to the Lie superalgebra \(sl(2|1) \) (see, for instance, Jafarov– Van der Jeugt recent papers/preprints)?
The author is supported by *São Paulo Research Foundation (FAPESP)*, Brazil, under the grant 13/07590-8.

![FAPESP logo](http://www.bv.fapesp.br/en/)

‘FAPESP is a very interesting model for us because São Paulo is one of the few states in the world where support of research is linked directly to gross domestic product (GDP),’ *Martyn Poliakoff*, vice-president of the Royal Society (UK), [Nature 510, 201 (12 June 2014) doi:10.1038/510201a]